

FOMOD Designer

A visual editor to quickly create FOMOD installers for Nexus based mods.

If you’re new around here, head to the Getting Started page!

Main Features

	No need to know XML - Use a simple node tree and/or the node wizards to navigate, create and modify your installer without having to know a single bit of XML syntax;

	No need to know FOMOD by heart - The possible children nodes and all the options to customize each node are all laid out for you. The wizards include a small description to help you out at the top;

	Includes all the features from FOMOD Validator - Validate and check for possible errors when loading and saving;

	Faster and simpler workflow - With a very simple node tree to transverse instead of bulky documents you can save a lot of time and dedicate more to your content;

	Don’t get lost in your own installer - With the ability to rename repeatable nodes (like the Pattern node) in-app with little to no interference in the final output you will no longer spend unnecessary time looking for the right tag to edit;

	Don’t want it? Hide it - Spent lots of time in something you’re not sure you want to keep? Hide it instead of deleting it, the node and its children are still fully editable but won’t show up in the output, saving you the time of recreating everything later;

	Preview your work - Whether you want to preview how the xml will look like or which files a certain install step will install, it has you covered;

	Default them! - Let’s face it, everyone uses Explicit Installation Steps even though the default value is Ascending. Worry no more, there is an option for that;

	Forgot the flags? - Auto-completers are included for flag labels and values, never mistype another flag;

	Forget the path - No more need to guess at paths and path separators, all path fields have a little button to the right that will open a dialog to point to the file directly;

	Hotkeys everywhere - Pretty much all actions have hotkeys associated with them, speed up that workflow;

	Not a fan of hotkeys? - Don’t worry, we got your back, every action is stored in an easy to access menu, at the top or by right-clicking;

	Customize - Almost everything in this app is customizable, check the Settings menu!

Todo

	Finish the damn Wizards!

	Improve the documentation (I suck at this part)

	Start the Full Installer Preview

Getting Started

Welcome to the FOMOD Designer documentation! Let’s get right to it.

Run the executable that comes with the package. If you need help with getting the correct package for you see
the Installation page.

First, you’ll see the Intro window. At the bottom of this window you’ll see your most recently opened installers,
in the future you can select one here to open it more quickly. Since you most likely have no recent installers,
click the New/Open button. Here you’ll choose the folder where the package you want to make an installer for
is located.

Note

Now for an important distinction from other apps you may have used: the FOMOD Designer does not have separate
New and Open buttons. Simply select the correct folder and it’ll auto detect an existing installer.
If you want to know about the behind the scenes for this, check the F.A.Q..

The Main window should now appear. If you’re a first-time user it should load the Basic View and you should head
on to the Basic Usage. In case you’re a returning user and/or you’ve enabled the Advanced View
head to the Advanced Usage.

Attention

If you need help with a button or something else on the window, try hovering over it and checking the bottom left
of the screen, in the status bar.

Installation

TL;DR: All you need to do is download the package [https://github.com/GandaG/fomod-editor/releases/latest],
extract it somewhere and run the FOMOD Designer executable.

Pre-Built Executables

There are pre-built, ready-to-use executables always available for
64-bit Windows and often for 64-bit Linux as well.

It is recommended to use the latest stable version [https://github.com/GandaG/fomod-editor/releases/latest]
since it’s less likely to have critical bugs. If you need to use a feature that
hasn’t made it to the stable builds, feel free to download the bleeding edge build [https://ci.appveyor.com/project/GandaG/fomod-editor/build/artifacts].

If there are no builds for your system or you just love to have tons
of work try building from source.

Building from Source

	Download the repository from Github [https://github.com/GandaG/fomod-designer/archive/develop.zip];

	Unpack the archive into a folder;

	Install Conda [http://conda.pydata.org/miniconda.html];

	Open the command line/terminal in the folder from step 2;

	Create the necessary environment within Conda:

	Windows 64-bit:

conda create -y -n fomod-designer^
 -c https://conda.anaconda.org/mmcauliffe^
 pyqt5=5.5.1 python=3.5.1 lxml=3.5.0

	Linux 64-bit:

conda create -y -n fomod-designer \
 -c https://conda.anaconda.org/mmcauliffe \
 pyqt5=5.5.1 python=3.5.1 lxml=3.5.0

	For other platforms you’ll have to figure out where the correct Conda packages are. As of now, you’ll need these:

	Package
	Version

	PyQt5
	5.5.1

	lxml
	3.5.0

	Activate the environment:

	Windows:

activate fomod-designer

	Other:

source activate fomod-designer

	Install other dependencies:

	Windows:

pip install pip -U
pip install setuptools -U --ignore-installed
pip install -r dev\reqs.txt

	Other:

pip install pip -U
pip install setuptools -U --ignore-installed
pip install -r dev/reqs.txt

	Build the app:

inv build

	Done! The built package is in the dist folder within the folder in step 2.

Basic Usage

Todo

Describe basic usage - basic view and wizards.

For first-time users and those who don’t really want to think too much about it.
Follow each wizard’s instructions in the app to fully build an installer.
Remember than you can only save or open a new installer when on the very first page!
If you’re mid-way through your work but you want to save and leave, simply hit Finish until you reach that first page.

Basic View

Todo

Describe basic view here - pretty much just the initial page.

Wizards

This section contains the descriptions of all the wizards so if you have any doubts simply come check here!
To search for a specific wizard use the search box on the left sidebar.

Todo

Finish wizards, not sure what to write here though.

Advanced Usage

For the advanced users and everyone who knows their way around a FOMOD installer.
In this section you’ll find descriptions of the tags and nodes themselves - what they are, how to use them and
examples when needed.

There are no restrictions when using the Advanced View, we trust that you know what you’re doing.
This is recommended for people who already know how to create/modify XML
installers and are interested in speeding up their work or for users who want more customization options than the
Basic View offers.

Advanced View

The Advanced View can be divided in 4 parts: Node Tree, Previews, Property Editor and Children Box.
All of these, with the exception of the Previews, can be moved around by the user.

The Node Tree, by default situated on the left, contains all the nodes in the installer’s two trees: the Info and
the Config tree. You can right-click the tree to see all the actions available - some of these, like Delete, are
not available for the root nodes. You can also traverse the tree with the arrow keys and use the Enter key or left-click
to select the node, this will update the Property Editor and the Children Box (and the Previews in case that
is enabled).

The Previews, situated on the center, has two tabs: GUI Preview and XML Preview. The GUI Preview has a Mod
Organizer-like interface that simulates the current Install Step - you can choose the options and the bottom half
reflects the flags that would be set and/or the files that would be installed. The XML Preview has a preview of the
XML code that that node and its children would output.

The Property Editor, by default situated on the top right, contains all the editable properties for the currently
selected node. You can find more information for each node’s properties in the FOMOD Bible.

The Children Box, by default situated on the bottom right, contains all the available children to add to the
currently selected node. Click on a child button here to add the corresponding node.

Learn you a FOMOD For Great Good

This section contains the FOMOD Bible - a description of all the tags/nodes with examples.
This is not meant to be read from top to bottom but rather as a dictionary or a glossary -
search for the tag/node you need more info on with the search box on the left sidebar.

Tag vs Node

A Tag is any item within an xml document. Within the FOMOD schema
(the document that defines the rules for installer documents)
all the allowed tags for FOMOD are defined. A tag has the format <tag/> or
<tag>text goes here<tag/> if it contains text.

Similarly, any item in the FOMOD Designer‘s Node Tree is a Node.
Every node has a direct correspondence to a xml tag.
These two terms are use interchangeably in the FOMOD Bible.

Attribute vs Property

An Attribute is a way to customize a tag. These are also defined in the FOMOD schema and have the format:
<tag attribute="value"/>.

A Property is the attribute equivalent for nodes. They can be edited via the Property Editor. In the Bible
the properties are always followed by the corresponding attribute in square brackets (p.e. Name [name]).

Attention

While a tag’s text (p.e. <tag>text goes here<tag/>) is not an attribute, in a node it is bundled together
with its properties for convenience. In order to distinguish text from other properties, it is marked with
[...] as its attribute.

So for a node that can have text its properties will have the line:
Text [...]

Tag Order

Some tags are enforced a specific order by the FOMOD schema.
When applicable, the possible/required children listed in each node are ordered.

This enforced order is reflected in the node tree. The user is able to modify the order
of repeatable nodes through drag and drop.

FOMOD Bible

Please take note this isn’t a fully comprehensive document (at least so far). If you want something more complete,
feel free to look at the revised *FOMOD* schema [https://github.com/GandaG/fomod-designer/blob/develop/resources/mod_schema.xsd].

Info

	Tag

	fomod

	Description

	The root node for the document containing all the information relative to the installer.

	Children

	

	Node
	Repeatable

	Name
	No

	Author
	No

	Description
	No

	ID
	No

	Categories Group
	No

	Version
	No

	Website
	No

	Properties

	None

Name

	Tag

	Name

	Description

	The node that holds the mod’s name.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	The name of the mod.

Author

	Tag

	Author

	Description

	The node that holds the mod’s author(s).

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	The author(s) of the mod.

Description

	Tag

	Description

	Description

	The node that holds the mod’s description.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	The description of the mod.

ID

	Tag

	Id

	Description

	The node that holds the mod’s ID.
The ID is the last part of the nexus’ link. Example:

Nexus mod link: http://www.nexusmods.com/skyrim/mods/548961 -> ID’s text is 548961

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	The ID of the mod.

Categories Group

	Tag

	Groups

	Description

	This node’s purpose is solely to group the categories this mod belongs to together.

	Children

	

	Node
	Repeatable

	Category
	Yes

	Properties

	None

Category

	Tag

	element

	Description

	The node that holds one of the mod’s category.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	A category this mod belongs to.

Version

	Tag

	Version

	Description

	The node that holds the mod’s version.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	This mod’s version.

Website

	Tag

	Website

	Description

	The node that holds the mod’s home website.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	The mod’s home website.

Config

	Tag

	config

	Description

	The main element containing the module configuration info.

	Children

	

	Node
	Repeatable
	Notes

	Name
	No
	

	Image
	No
	

	Mod Dependencies
	No
	At least one of the following is required
for the installer to have any effect:
Mod Dependencies, Installation Steps,
Mod Requirements, Conditional Installation

	Installation Steps
	No
	At least one of the following is required
for the installer to have any effect:
Mod Dependencies, Installation Steps,
Mod Requirements, Conditional Installation

	Mod Requirements
	No
	At least one of the following is required
for the installer to have any effect:
Mod Dependencies, Installation Steps,
Mod Requirements, Conditional Installation

	Conditional Installation
	No
	At least one of the following is required
for the installer to have any effect:
Mod Dependencies, Installation Steps,
Mod Requirements, Conditional Installation

	Properties

	

	Property
	Attribute
	Description

	N/A
	{http://www.w3.org/2001/XMLSchema-instance}noNamespaceSchemaLocation
	This attribute contains the
namespace for this file.

This property is not editable.

The value should always be:
"http://qconsulting.ca/fo3/ModConfig5.0.xsd"

Name

	Tag

	moduleName

	Description

	The name of the module. Used to describe the display properties of the module title.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Text
	[...]
	The name of the mod.

	Position
	position
	The position of the mod’s name in the header.

Accepts the values: "Left", "Right" or "RightOfImage"

	Colour
	colour
	The colour of the mod’s name in the header.

Accepts RGB hex values.

Image

	Tag

	moduleImage

	Description

	The module logo/banner.

[Ignored in Mod Organizer]

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Path
	path
	The path to the image file.

	Show Image
	showImage
	Whether the image is visible.

Accepts true or false

	Show Fade
	showFade
	Whether the image’s opacity is fixed.

Accepts true or false

	Height
	height
	The maximum height of the image.

Accepts any integer larger than -1

Mod Dependencies

	Tag

	moduleDependencies

	Description

	Items upon which the module depends. The installation process will only start after these conditions have been met.

While flag dependencies are allowed they should not be used since no flag will have been set at the time these
conditions are checked.

	Children

	

	Node
	Repeatable

	File Dependency
	Yes

	Flag Dependency
	Yes

	Game Dependency
	No

	Dependencies
	Yes

	Properties

	

	Property
	Attribute
	Description

	Type
	operator
	The type of the dependency: And or Or

If the type is And, all conditions under
this node must be met.

If the type is Or, only one condition
must be met.

File Dependency

	Tag

	fileDependency

	Description

	Specifies that a mod must be in a specified state.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	File
	file
	The path to the file to be checked.

	State
	state
	The supposed state of the file.

Flag Dependency

	Tag

	flagDependency

	Description

	Specifies that a condition flag must have a specific value.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Flag
	flag
	The flag where this condition falls upon.

	Value
	value
	The value of the flag to be checked.

Game Dependency

	Tag

	gameDependency

	Description

	Specifies a minimum required version of the installed game.

[Ignored in Mod Organizer]

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Version
	version
	The minimum version of the game.

Installation Steps

	Tag

	installSteps

	Description

	The list of install steps that determine which files (or plugins) that may optionally be installed for this module.

	Children

	

	Node
	Repeatable
	Notes

	Install Step
	Yes
	At least one of Install Step is required.

	Properties

	

	Property
	Attribute
	Description

	Order
	order
	The order of the install steps beneath
this node.
"Explicit" follows document
order while the others order
alphabetically.

Accepts "Ascending",
"Descending" or "Explicit"

Install Step

	Tag

	installStep

	Description

	A step in the install process containing groups of optional plugins.

	Children

	

	Node
	Repeatable
	Notes

	Visibility
	No
	

	Option Group
	No
	At least one of Option Group is required.

	Properties

	

	Property
	Attribute
	Description

	Name
	name
	The name of this install step.

Visibility

	Tag

	visible

	Description

	The pattern against which to match the conditional flags and installed files.
If the pattern is matched, then the install step will be visible.

	Children

	

	Node
	Repeatable

	File Dependency
	Yes

	Flag Dependency
	Yes

	Game Dependency
	No

	Dependencies
	Yes

	Properties

	

	Property
	Attribute
	Description

	Type
	operator
	The type of the dependency: And or Or

If the type is And, all conditions under
this node must be met.

If the type is Or, only one condition
must be met.

Dependencies

	Tag

	dependencies

	Description

	A dependency that is made up of one or more dependencies.

	Children

	

	Node
	Repeatable

	File Dependency
	Yes

	Flag Dependency
	Yes

	Game Dependency
	No

	Dependencies
	Yes

	Properties

	

	Property
	Attribute
	Description

	Type
	operator
	The type of the dependency: And or Or

If the type is And, all conditions under
this node must be met.

If the type is Or, only one condition
must be met.

Option Group

	Tag

	optionalFileGroups

	Description

	The list of optional files (or plugins) that may optionally be installed for this module.

	Children

	

	Node
	Repeatable
	Notes

	Group
	Yes
	At least one of Group is required.

	Properties

	

	Property
	Attribute
	Description

	Order
	order
	The order of the install steps beneath
this node.
"Explicit" follows document
order while the others order
alphabetically.

Accepts "Ascending",
"Descending" or "Explicit"

Group

	Tag

	group

	Description

	A group of plugins for the mod.

	Children

	

	Node
	Repeatable
	Notes

	Plugins
	No
	At least one of Plugins is required.

	Properties

	

	Property
	Attribute
	Description

	Name
	name
	The name of this group.

	Type
	type
	The selection type for this group.

Accepts "SelectAny",
"SelectAtMostOne",
"SelectExactlyOne",
"SelectAll" or
"SelectAtLeastOne"

Plugins

	Tag

	plugins

	Description

	The list of plugins in the group.

	Children

	

	Node
	Repeatable
	Notes

	Plugin
	Yes
	At least one of Plugin is required.

	Properties

	

	Property
	Attribute
	Description

	Order
	order
	The order of the plugins beneath
this node.
"Explicit" follows document
order while the others order
alphabetically.

Accepts "Ascending",
"Descending" or "Explicit"

Plugin

	Tag

	plugin

	Description

	A mod plugin belonging to a group.

	Children

	

	Node
	Repeatable
	Notes

	Description
	No
	At least one of Description is required.

	Image
	No
	

	Files
	No
	

	Flags
	No
	

	Type Descriptor
	No
	At least one of Type Descriptor is required.

	Properties

	

	Property
	Attribute
	Description

	Name
	name
	The name of this plugin.

Description

	Tag

	description

	Description

	A description of the plugin.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Description
	[...]
	The plugin’s description.

Image

	Tag

	image

	Description

	The optional image associated with a plugin.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Path
	path
	The path to the image.

Files

	Tag

	files

	Description

	A list of files and folders to be installed.

	Children

	

	Node
	Repeatable

	File
	Yes

	Folder
	Yes

	Properties

	None

File

	Tag

	file

	Description

	A file belonging to the plugin or module.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Source
	source
	The path to the file.

	Destination
	destination
	The path from the game’s mod folder
to the destination of this file.

	Priority
	priority
	The priority of the file.

Higher priority means the file will
overwrite other files with lower
priority.

	Always Install
	alwaysInstall
	If true, this file will be
always installed, regardless of the
user’s choice.

Accepts true or false

	Install If Usable
	installIfUsable
	If true, this file will be
installed unless the plugin’s type
is NotUsable, regardless of the
user’s choice.

Accepts true or false

Folder

	Tag

	folder

	Description

	A folder belonging to the plugin or module.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Source
	source
	The path to the folder.

	Destination
	destination
	The path from the game’s mod folder
to the destination of this folder.

	Priority
	priority
	The priority of the folder.

Higher priority means the folder
will
overwrite other files with lower
priority.

	Always Install
	alwaysInstall
	If true, this folder will be
always installed, regardless of the
user’s choice.

Accepts true or false

	Install If Usable
	installIfUsable
	If true, this folder will be
installed unless the plugin’s type
is NotUsable, regardless of the
user’s choice.

Accepts true or false

Flags

	Tag

	conditionFlags

	Description

	The list of condition flags to set if the plugin is in the appropriate state.

	Children

	

	Node
	Repeatable
	Notes

	Flag
	Yes
	At least one of Flag is required.

	Properties

	None

Flag

	Tag

	flag

	Description

	A condition flag to set if the plugin is selected.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Label
	name
	The flag’s identifying label.

	Value
	[...]
	The flag’s new value.

Type Descriptor

	Tag

	typeDescriptor

	Description

	Describes the type of a plugin.

	Children

	

	Node
	Repeatable
	Notes

	Dependency Type
	No
	Either Dependency Type or Type must be used.

	Type
	No
	Either Dependency Type or Type must be used.

	Properties

	None

Dependency Type

	Tag

	dependencyType

	Description

	Used when the plugin type is dependent upon the state of other mods.

	Children

	

	Node
	Repeatable
	Notes

	Patterns
	No
	At least one of Patterns is required.

	Default Type
	No
	At least one of Default Type is required.

	Properties

	None

Patterns

	Tag

	patterns

	Description

	The list of dependency patterns against which to match the user’s installation.
The first pattern that matches the user’s installation determines the type of the plugin.

	Children

	

	Node
	Repeatable
	Notes

	Pattern
	Yes
	At least one of Pattern is required.

	Properties

	None

Pattern

	Tag

	pattern

	Description

	A specific pattern of mod files and condition flags against which to match the user’s installation.

	Children

	

	Node
	Repeatable
	Notes

	Dependencies
	No
	At least one of Dependencies is required.

	Type
	No
	At least one of Type is required.

	Properties

	None

Type

	Tag

	type

	Description

	The type of the plugin.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Type
	name
	Describes the plugin’s type.

Accepts Required,
Recommended, Optional,
CouldBeUsable or
NotUsable

Default Type

	Tag

	defaultType

	Description

	The default type of the plugin used if none of the specified dependency states are satisfied.

	Children

	None

	Properties

	

	Property
	Attribute
	Description

	Type
	name
	Describes the plugin’s type.

Accepts Required,
Recommended, Optional,
CouldBeUsable or
NotUsable

Mod Requirements

	Tag

	requiredInstallFiles

	Description

	The list of files and folders that must be installed for this module.

	Children

	

	Node
	Repeatable

	File
	Yes

	Folder
	Yes

	Properties

	None

Conditional Installation

	Tag

	conditionalFileInstalls

	Description

	The list of optional files that may optionally be installed for this module, based on condition flags.

	Children

	

	Node
	Repeatable
	Notes

	Patterns
	No
	At least one of Patterns is required.

	Properties

	None

Patterns

	Tag

	patterns

	Description

	The list of patterns against which to match the conditional flags and installed files.
All matching patterns will have their files installed.

	Children

	

	Node
	Repeatable
	Notes

	Pattern
	Yes
	At least one of Pattern is required.

	Properties

	None

Pattern

	Tag

	pattern

	Description

	A specific pattern of mod files and condition flags against which to match the user’s installation.

	Children

	

	Node
	Repeatable
	Notes

	Files
	No
	At least one of Files is required.

	Dependencies
	No
	At least one of Dependencies is required.

	Properties

	None

Contributing

We love contributions from everyone.
By participating in this project,
you agree to abide by the thoughtbot code of conduct [https://thoughtbot.com/open-source-code-of-conduct].

Issues

Before submitting your issue, please make sure that you’ve provided all the info
required in the issue template.

Pull Requests

Before submitting your pull request, please make sure that you’ve provided all the
info required in the pull request template.

Contributing Code

General Guidelines:

	This repo uses the gitflow [https://github.com/nvie/gitflow] branching model.
Don’t commit directly to the master or develop branches.

	Make sure the tests pass on the CI server. Local tests are not available at the moment.

	Follow the style guide [https://www.python.org/dev/peps/pep-0008/].

	Write decent commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Run inv docs to generate documentation locally, inv build to build the executable and
inv preview to preview the app without building it.

Setup the work environment:

	Fork the repo [https://help.github.com/articles/fork-a-repo/].

	Setup your fork locally [https://help.github.com/articles/fork-a-repo/#keep-your-fork-synced].

	This repo uses a .settings file to define all the necessary settings. This file follows this syntax:

[git]
user=git_username
email=git_email

Create and add this file to your clone’s root.

	Install Vagrant [https://www.vagrantup.com/docs/installation/].

	Run this in the clone’s root:

	If you have Python available:

pip install invoke
inv create enter

	If not:

vagrant up
vagrant ssh -- -Yt 'cd /vagrant/; /bin/bash'

It will take a while.

	You should now be inside an Ubuntu Trusty virtual machine, this is where you’ll work.
Make, commit and push your changes.

	Create a pull request [https://help.github.com/articles/creating-a-pull-request/].

Thank you, contributors [https://github.com/GandaG/fomod-editor/graphs/contributors]!

Changelog

0.8.1 (2016-08-11)

	Fixed remote CI whitelisted builds.

0.8.0 (2016-08-11)

	Documentation is now available.

	Users are now able to manipulate and add comments.

	Users are now able to hide non-comment nodes.

	32 bit builds are now available.

0.7.2 (2016-07-13)

	Plugin node should now have the correct required child nodes.

	Fixed validation and warning dialogs and ignore process.

	Fixed files processing in preview.

0.7.1 (2016-07-12)

	Fixed preview issue with non-existent nodes under info root.

	Updated validation and children groups.

0.7.0 (2016-07-10)

	Fixed rare bug with the validator.

	Added Dependencies Wizard.

	Children box now lists invalid child nodes greyed out instead of deleting them.

	Fixed issues with saving.

	Nodes should now be properly sorted.

	Added specialized child nodes with colours.

	Added auto-completion for flag labels and their values.

	Fixed recent files issues.

	Properties are now ordered.

	Added node-specific metadata.

	Pattern node’s names are now editable.

	Improved Setting’s dialog.

	Added Defaults section to settings.

	Added Appearance tab to settings dialog.

	Fixed rare bug with xml preview.

	Disabled Wizards.

	Added user-defined noe sorting with drag and drop.

	Improved logos.

	Added copy and paste functionality.

	Added undo and redo functionality.

	Loading ui should now be slightly faster - ui is now pre-compiled.

	Full keyboard navigation is now supported on the node tree.

	Added context menu to the node tree.

	Actions should now be properly disabled/enabled when appropriate.

	All nodes should now be correct on their allowed number.

	Added plain text editor to most simple text properties and html editor to plugin’s description text.

	Added install step ui preview.

	Added tutorial at startup. Added setting to re-enable the tutorial.

0.6.0 (2016-06-13)

	Added check for updates at startup.

	Added line numbers to code preview.

	Moved previews to separate threads, loading each node should now be much faster.

	Improved button look on object box.

0.5.1 (2016-06-12)

	Fixed versioning issues.

0.5.0 (2016-06-12)

	Added intro window.

	Added Files wizard.

	Added wizard environment setup.

	Updated app and file icons.

	The object box now consists of independent buttons for each child instead of a list.

	A message box asking for confirmation should now appear when trying to open a new installer while there unsaved changes.

	Property editor should now be properly cleared when opening a new installer.

	A message box asking for action should now appear when using the recent files menu and the path no longer exists.

	Fixed relation between view menu and docked widget states.

	Dialog windows should now properly be placed on top of other windows.

	Improved some nodes’ names.

0.4.1 (2016-05-16)

	Fixed wrong default attributes in file and folder tags.

	Added wizard framework.

0.4.0 (2016-05-14)

	Added file and window icons.

	Fixed combo boxes not being set at start.

	Added recent files menu.

	Added about dialog.

	Added view menu.

	Closing the main window with unsaved changes should now display a warning.

	Not identified tags should be properly handled now.

	Syntax errors in the xml should be properly handled now.

	File, folder and colour properties now have a proper specific widget.

	Added sorting to xml elements when saving.

	Added xml code preview.

	Added settings window.

	Attribute parsing should now properly ignore the ones that are unknown.

	Validation and warning checks added.

	Multiple bugfixes.

0.3.1 (2016-04-17)

	Tags/item with name/source property now have that as the title instead of the tag’s name.

	Fixed all keyboard shortcuts.

	Everything is now included within a single executable.

	Added full linux support.

	Included build number in version.

	Fixed no error raised when no required child exist.

	Window title now includes an asterisk when any content has been modified.

	Missing files in fomod folder are now properly checked.

	Fixed spinbox property.

0.3.0 (2016-04-07)

	All basic functionality is now done.

	Tag properties are now properly displayed and editable.

	XML comments are now ignored by the parser.

	Child objects are now auto-selected when created.

	Fixed error when opening an installer over an already opened one.

	Fixed dependencies tag not being able to be self nested.

	Fixed deployed archive structure.

0.2.1 (2016-04-05)

	In-tag text is now properly parsed and saved along with everything else.

0.2.0 (2016-04-05)

	Users can now modify the installer’s objects.

0.1.0 (2016-04-03)

	Users can now open and save FOMOD installers.

	Main windows title now shows which package you are currently working on.

0.0.1 (2016-03-15)

	GUI draft completed.

Frequently Asked Questions

Why are the New and Open buttons merged?

Ok, let’s run through what would happen in the code for the New button:

	Get the package folder from the user;

	Check if an installer exists in that folder;

	If it doesn’t exist, create a new one;

	It it does exist, complain to the user.

Now for the Open button:

	Get the package folder from the user;

	Check if an installer exists in that folder;

	If it doesn’t exist, complain to the user;

	It it does exist, open it up.

Do you see how similar these two are? It wouldn’t really make sense to have
two completely separate actions that do pretty much the same thing. This way
everything is much simpler on our side and we never have to complain to you!

Index

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		FOMOD Designer

_static/comment.png

_static/down.png

